Publications




Papers can be accessed on Google scholar

In preparation

Boyle M. J. W., R. L. Kitching, C. J. Burwell, E. Leach, V. Amaral, M. Laidlaw and L. A. Ashton*. Insects have responded to 1° of climate warming in a subtropical rainforest (To be submitted to Science).

Boyle, M. J. W., L. A. Ashton*, Thébaud, C., Dale, J., and Kitching. R.L., Functional diversity of moths is shaped by elevation. (To be submitted to Functional Ecology).

Griffiths, H. M^., L. A. Ashton*^, T. A. Evans, C. L. Parr, and P. Eggleton. Ants exert dominant ecological pressures on tropical forests. (To be submitted to Ecology Letters).

In review/revision

Boyle, M. J. W., Sharp, A. C., Barclay, M., Chung, A. Y. C., Ewers, R. M., De Roguemont, G., Bonebreak, T. C., Kitching, R. L., Stork, N., & Ashton, L. A. Are undescribed insect species declining faster than described species? A case study of tropical Staphylinid beetles. Current Biology. In revision.

Bonebrake, T. C., Tsang, T. P. N., Yu, N., Wang, Y., Ledger, M. J., Tilley, H. B., Yau, E. Y. H., Andersson, A.A., Boyle, M. J. W., Lee. K. W. K., Li, Q., Ling, Y. F., Dongmo, M .A. K., Güçlü, C., Dingle ,C., Ashton, L. A. Tropical cities as windows into the ecosystems of our present and future. Biotropica. In review.

R. L. Kitching, C. Wenda, J. Rocha, C. Thébaud, D. Strasberg,  S. Xing & Ashton, L. A.* In revision. Niches, Neutrality and Contingency on a Tropical Oceanic Island: explaining Diversity and Turnover in Moth Assemblages in Island Rainforests. Biodiversity and Conservation. In revision.

Güclü, C., Chun, L. L., S. Abbas, Ashton, L. A. and Boyle, M. J. W.. Beta-Nestedness and Turnover Reveal Drivers of Community Assembly in a Regenerating sub-Tropical Forest Global Ecology and Conservation. In revision.

Barlow, B. E. L, Ashton, L. A.*, Boyle, M. J. W., Leach, E. C., Stone, M. J., Dem, F., Kitching, R. L., Stork, N.E. 2024. Moth, beetle, and bug assemblages are shaped differently across a tropical rainforest vertical gradient. Biodiversity and Conservation. In revision.

Güclü, C., Abbas, S., Yung, E., Ashton, L. A. Community Phylogenetic Structure & Phylogenetic Turnover Show Breaks between Regenerating Lowland and Montane Forests in Hong Kong. Perspective in Plant Ecology, Evolution and Systematics. In revision.

2024

Zeng, X., Gao, H., Wang, R., Machjer, B., Woon, J., Wenda, C., Eggleton, P., Griffiths H. & Ashton, L.A.* 2024. Global contribution of invertebrates to forest litter decomposition. Ecology Letters. https://doi.org/10.1111/ele.14423.

Alcantara M.J.M., Fontanilla, A.M., L. A. Ashton, Burwell, Chris J., Cao, M., Han, H., Huang, H., Kitching, R.L., Reshchikov, A., Shen, X., Tang, Y., Wan, Y., Xu, Z., Nakamura, A. 2024. Bugs and Bergmann’s rule: a cross-taxon large-scale study reveals elevational and latitudinal body size variation of insect communities.  Entomologia Generalis. 10.1127/entomologia/2024/2246.

Barlow, B. E. L, Nakamura, A., Ashton, L. A.*. 2024. Predation, but not herbivory, declines with elevation in a tropical rainforest. Journal of Tropical Biology. Accepted.

2023

Wenda, C., Nakamura, A., & Ashton, L. A.* 2023. Season and herbivore defence trait mediate tri-trophic interactions in tropical rainforest. Journal of Animal Ecology, 92, 446-476.

Wenda, C., Gaitán-Espitia, J.D., Solano-Iguaran, J.J., Nakamura, A., Majcher, B.M. & Ashton, L.A.* (2023) Heat tolerance variation reveals vulnerability of tropical herbivore–parasitoid interactions to climate change. Ecology Letters, 26, 278 290– 13.

Boyle, M. J. W. Wet-bulb temperatures reveal inequitable heat risk following climate change in Hong Kong. 2023. Environmental Research Letters 18.9: 094072.

Xing, S., Leahy, L., Ashton, L. A., Kitching, R. L., Bonebrake, T. C., & Scheffers, B. R. 2023. Ecological patterns and processes in the vertical dimension of terrestrial ecosystems. Journal of Animal Ecology, 92, 538– 551.

Ochoa-Hueso, R., Delgado-Baquerizo, M., Risch, A.C., Ashton, L. A., et al. 2023. Bioavailability of macro and micronutrients across global topsoils: Main drivers and global change impacts. Global Biogeochemical Cycles: e2022GB007680.

Kitching, R. L., Maunsell, S. C., Odell, E. H., Orr, A. G., Nakamura, A., & Ashton, L. A. (2023). Arthropods of Australia’s subtropical and tropical rainforests: rich and unique hotspots of biological diversity?. Journal of Insect Conservation, 1-16.

2022

Panthee, S.; Ashton, L.A.; Tani, A.; Sharma, B.; Nakamura, A. Mechanical Branch Wounding Alters the BVOC Emission Patterns of Ficus Plants. Forests 2022, 13, 1931.

Donkersley, P., Ashton, L.A., Lamarre, G. P. A., & Segar, S. (2022). Global insect decline is the result of wilful political failure: A battle plan for entomology. Ecology and Evolution, 12, e9417.

Zanne, A. E., Flores-Moreno, H., Powell, J. R., Cornwell, W. K.,… Ashton, L. A… Zalamea P. 2022. Termite sensitivity to temperature affects global wood decay rates. Science, 377, 1440-1444.

Nakamura, A., Scheffers, B., Kitching, R. L., & Ashton, L. A. (Eds.). 2022. Understanding patterns and mechanisms of forest canopy diversity and ecosystem functions in a changing world. Frontiers in Forests and Global Change

Guo Z, Yan Z, Majcher B.M, Lee C.K, Zhao Y, Song G, Wang B, Wang X, Deng Y, Michaletz S.T, Ryu Y. 2022 Dynamic biotic controls of leaf thermoregulation across the diel timescale. Agricultural and Forest Meteorology. 15;315:108827.

2021

H. M. Griffiths*, Ashton, L. A*., Catherine L Parr, Paul Eggleton. 2021. The impact of invertebrate decomposers on plants and soil New Phytologist 231: 2142-2149 *corresponding and co-first author.

This article is protected by copyright. All rights reservedFigure 1. The fate of plant matter through the decomposition process. This can beconceptualised as removing different layers of an onion. The initial stages of decompositioninvolve leaching …

This article is protected by copyright. All rights reserved

Figure 1. The fate of plant matter through the decomposition process. This can be

conceptualised as removing different layers of an onion. The initial stages of decomposition

involve leaching and multiple organisms (microbial and invertebrate) that can digest simple

compounds: carbohydrates, peptides and fats (the red layer of the onion). After this stage multiple

organisms can catabolise lignocellulose (the yellow and green parts of the onion). This can be

microbes alone, invertebrates alone (using endogenous cellulases, but generally not endogenous

lignin-modifying enzymes), or a partnership between endogenous invertebrate cellulases and

(mostly) gut symbiont cellulases (‘digestomes’). The result of these progressive decomposition

processes is the creation of organic matter that becomes smaller in molecular size and is

increasingly protected from further breakdown by interaction with mineral surfaces and

incorporation into soil aggregates (Lehmann & Kleber, 2015 defined here as stable or protected

soil organic matter; the blue part of the onion). This protected organic matter is then consumed by

a range of organisms, including microbes, soil-feeding termites, and endogeic earthworms. These

soil-feeding invertebrates often break down clay-complexed peptides and are thought to be

important sources of plant-available nitrogen, key bioavailable parts of the nitrogen cycle (Ji &

Brune, 2005).

H. M. Griffiths, Paul Eggleton, Nicole Hemming‐Schroeder, Tom Swinfield, Joel S Woon, Steven D Allison, David A Coomes, Ashton, L. A., Catherine L Parr. 2021. Carbon flux and forest dynamics: Increased deadwood decomposition in tropical rainforest tree‐fall canopy gaps Global Change Biology 27: 1601-1613.

Wenda, C., Ashton, L. A. Ecology: What Affects the Distribution of Global Bee Diversity Current Biology 31: R127-R128.


2020

Tom R Bishop, Hannah M Griffiths, Ashton, L. A., Paul Eggleton, Joel S Woon, Catherine L Parr. 2020. Clarifying terrestrial recycling pathways. Trends in ecology & evolution 36: 9-11.

Tom R Bishop, Hannah M Griffiths, Ashton, L. A., Paul Eggleton, Joel S Woon, Catherine L Parr. 2020. Clarifying terrestrial recycling pathways. Trends in ecology & evolution 36: 9-11.

Boyle M.J.W., Tom R Bishop, Sarah H Luke, Michiel van Breugel, Theodore A Evans, Marion Pfeifer, Tom M Fayle, Stephen R Hardwick, R Isolde Lane‐Shaw, Kalsum M Yusah, Imogen CR Ashford, Oliver S Ashford, Emma Garnett, Edgar C Turner, Clare L Wilkinson, Arthur YC Chung, Robert M Ewers. 2020. Localised climate change defines ant communities in human‐modified tropical landscapes. Functional Ecology 00: 1– 15.

Goldman, A.E., Timothy C Bonebrake, Toby PN Tsang, Theodore A Evans, Luke Gibson, Paul Eggleton, Hannah M Griffiths, Catherine L Parr, Ashton, L. A. 2020. Drought and presence of ants can influence hemiptera in tropical leaf litter Biotropica 52: 221-229.

Kitching, R.L., Ashton, L. A., Orr, A., Odell. 2020. The Pyraloidea of Eungella: a moth faun in its elevational and distributional context. Proceedings of the Royal Society of Queensland 125: 65-79.

Kitching, R.L. Ashton, L. A., Leach, E.C., Odell, E.H., McDonald, W.J.F., Arvidsson, D and Kitching. 2020. The Eungella Biodiversity Study: Filling the knowledge gap. Proceedings of the royal society of Queensland 125: 11-21.

Stephanie J Law, Tom R Bishop, Paul Eggleton, Hannah Griffiths, Ashton, L. A., Catherine Parr. 2020. Darker ants dominate the canopy: Testing macroecological hypotheses for patterns in colour along a microclimatic gradient. Journal of Animal Ecology 89: 374-359.

2019

Ashton, L. A. 2019. Rainforests Are in Peril, and So Are We| Rainforest: Dispatches from Earth's Most Vital Frontlines by Tony Juniper, Profile Books, 2018.£ 16.99, hbk (448 pp.) Trends in Ecology & Evolution 34 (12), 1063-1064.

Timothy C Bonebrake, Fengyi Guo, Caroline Dingle, David M Baker, Roger L Kitching, Ashton, L. A. 2019. Conservation Success through IPBES-Guided Transformative Change. Trends in Ecology and Evolution 34: 970-971.

1-s2.0-S0169534719301041-gr1_lrg.jpg

E. J. Dale, R. L. Kitching, C. Thebaud, S. C. Maunsell, Ashton, L. A. 2019. Moths in the Pyrénées: spatio-temporal patterns and indicators of elevational assemblages. Biodiversity and Conservation 28: 1593–1610.

H. M. Griffiths^, Ashton, L. A.*^, T. A. Evans, C. L. Parr, P. Eggleton. 2019. Termites can decompose more than half of deadwood in tropical rainforest. Current Biology 29: 118-119. ^co-first author, *corresponding author

Ashton, L. A., H. M. Griffiths*, C. L. Parr, T. A. Evans, R. K. Didham, F. Hasan, Y. A. Teh, H. S. Tin, C. S Vairappan, P. Eggleton. 2019. Termites mitigate the effects of drought in tropical rainforest. Science 363: 174-177.

Law S., P. Eggleton, H. M. Griffiths, Ashton, L. A. and C. L. Parr. 2019. Suspended Dead Wood Decomposes Slowly in the Tropics, with Microbial Decay Greater than Termite Decay. Ecosystems 22: 1176 - 1188.

2018

Xing S., B. C. Bonebrake, Ashton, L. A., R. L. Kitching, M. Cao, Z. Sun, J. C. Ho, A. Nakamura. 2018. Colors of night: climate–morphology relationships of geometrid moths along spatial gradients in southwestern China. Oecologia 188: 537-546.

Griffiths, H. M.*, Ashton, L. A.*, A. E. Walker, F. Hasan, T. Evans, P. Eggleton and C. L. Parr. 2018. Ants are the major agents of nutrient redistribution from tropical rainforests. The Journal of Animal Ecology 87: 293-300. *co-first author.

11011726_10153531096690681_8612878193925724372_n.jpg

2017

Nakamura, A., R. L. Kitching, M. Cao, T. J. Creedy, T. M. Fayle, M. Freiberg, C. N. Hewitt, T. Itioka, L. P. Koh, K. Ma, Y. Malhi, A. Mitchell, V. Novotny, C. M. P. Ozanne, L. Song, H. Wang, and Ashton L. A.. 2017. Forest canopy science: achievements and horizons. Trends in Ecology and Evolution 32: 438-451.

Beck, J., McCain, C. M., Axmacher, J. C., Ashton, L. A., Bärtschi, F., Brehm, G., Choi, S., Cizek, O., Cowell. R. K., Fiedler, K., Francois, C. L., Highland, S,, Holloway, J. D., Intachat, J., Kadlec, T., Kitching, R. L., Maunsell, S. C., Merckx, T., Nakamura, A., Odell, E., Sang, W., Toko, P. S., Zamecnik, J., Zou, Y. & Novotny, V. 2017. Elevational species richness gradients in a hyperdiverse insect taxon: a global meta-study on geometrid moths. Global Ecology and Biogeography 26: 412-424.

We aim to document elevational richness patterns of geometrid moths in a globally replicated, multi-gradient setting; and to test general hypotheses on environmental and spatial effects (i.e., productivity, temperature, precipitation, area, mid-domain effect, and human habitat disturbance) on these richness patterns.


2016

Colwell, R. K., N. J. Gotelli, Ashton L. A., J. Beck, G. Brehm, T. M. Fayle, K. Fiedler, M. L. Forister, M. Kessler, R. L. Kitching, P. Klimes, J. Kluge, J. T. Longino, S. C. Maunsell, C. M. McCain, J. Moses, S. Noben, K. Sam, L. Sam, A. M. Shapiro, X. Wang, and V. Novotny. 2016. Midpoint attractors and species richness: Modelling the interaction between environmental drivers and geometric constraints. Ecology Letters 19: 1009-1022.

Geometric constraint models. (a) The classic geometric constraint model illustrated by a physical analogy: a set of pencils (species), some shorter and some longer (narrower and wider elevational ranges), stored in a schoolchild's old-fashioned pencil-box (the bounded elevational domain) (Colwell et al. 2004). If the box is shaken end to end, horizontally, so that the position of each pencil is randomised, the expected number E(n) of pencils that overlap (species richness) near the middle of the box is inevitably greater than the number that overlap nearer the ends of the box, a pattern that is symmetric around the centre of the box. But the constraint does not act uniformly on the pencils as the box is shaken: the shorter pencil stubs move more widely and freely than the longer pencils. By analogy, the distribution of small-ranged species is less constrained by geometry than the distribution of large-ranged species (Colwell & Lees 2000; Dunn et al. 2007). (b) A physical analogy for the midpoint attractor model. Suppose that each pencil has a steel ball bearing embedded at its midpoint (blue circles). A magnetic field, the attractor, is applied across the pencil box (green). As the box is shaken end to end, the pencils tend to collect near the attractor, as their midpoint ball bearings are drawn towards the magnet. If the attractor is located near one end of the box, as illustrated, the expected number of pencils E(n) that stack up at any location along the length of the pencil box is asymmetric. However, because the midpoints of the longer pencils cannot align with the magnet (since longer pencils abut the end of the box), the peak of E(n) does not coincide with the centre of the attractor. Thus E(n) is influenced jointly by the attractor (the magnet) and the constraint (the limits of the pencil box). The pattern of E(n) is narrow when the attractor is strong, broad when the attractor is weak.


Ashton, L. A., A. Nakamura, C. J. Burwell, Y. Tang, M. Cao, T. Whitaker, Z. Sun, H. Huang & R. L. Kitching. 2016. Elevational sensitivity in an Asian ‘hotspot’: moth diversity across elevational gradients in tropical, sub-tropical and sub-alpine China. Scientific Reports 6: 26513.

Leach, E., C. J. Burwell, Ashton, L. A. D. Jones and R. L. Kitching. 2016. Comparison of point counts and automated acoustic monitoring: detecting birds in a rainforest biodiversity survey. Emu 116: 305-309.

Bassian Thrush (JJ Harrison)

Ashton, L. A., A. Nakamura, Y. Basset, C. J. Burwell, M. Cao, R. Eastwood, E. Odell, E. G. d. Oliveira, K. Hurley, M. Katabuchi, S. Maunsell, J. McBroom, J. Schmidl, Z. H. Sun, Y. Tang, T. Whitaker, M. J. Laidlaw, W. J. F. McDonald, and R. L. Kitching. 2016. Vertical stratification of moth across elevation and latitude. Journal of Biogeography 43: 59-69.

2015

Ashton, L. A., E. H. Odell, C. J. Burwell, S. C. Maunsell, A. Nakamura, W. J. F. McDonald, and R. L. Kitching. 2015. Altitudinal patterns of moth diversity in tropical and subtropical rainforest. Austral Ecology 42: 197-208.

Odell, E. H., Ashton, L. A., and R. L. Kitching. 2015. Elevation and moths in acentral eastern Queensland rainforest. Austral Ecology 42: 133-144.

Nakamura, A., C. J. Burwell, Ashton, L. A., M. J. Laidlaw, M. Katabuchi, and R. L. Kitching. 2015. Identifying indicator species of elevation: Comparing the utility of woody plants, ants and moths for long-term monitoring. Austral Ecology 42: 177-188.

2014

Ashton, L. A., H. S. Barlow, A. Nakamura, and R. L. Kitching. 2014. Diversity in tropical ecosystems: the species richness and turnover of moths in Malaysian rainforests. Insect Conservation and Diversity 8: 132-142.

2013

Kitching, R. L., and Ashton L. A. 2013. Predictor sets and biodiversity assessments: the evolution and application of an idea. Pacific Conservation Biology 19: 418-426.

Y. Ji*, Ashton, L.A.,*, S. M. Pedley*, D. P. Edwards*, Y. Tang, A. Nakamura, R. Kitching, P. M. Dolman, P. Woodcock, F. A. Edwards, T. H. Larsen, W. W. Hsu, S. Benedick, K. C. Hamer, D. S. Wilcove, C. Bruce, X. Wang, T. Levi, M. Lott, B. C. Emerson, and D. W. Yu*. 2013. Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecology Letters 16: 1245-1257. *These authors contributed equally to this study

Kitching, R. L., Ashton L. A., C. J. Burwell, S. L. Boulter, P. Greenslade, M. J. Laidlaw, C. L. Lambkin, S. C. Maunsell, A. Nakamura, and F. Ødegaard. 2013a. Sensitivity and threat in high elevation rainforests: outcomes and consequences of the IBISCA-Queensland Project. Treetops at Risk. pp 131-139. Springer-Verlag, Berlin.

Kitching, R. L., Ashton L. A., A. Nakamura, T. Whitaker, and C. V. Khen. 2013b. Distance-driven species turnover in Bornean rainforests: homogeneity and heterogeneity in primary and post-logging forests. Ecography 36: 675-682.

2011

Ashton, L. A., R. L. Kitching, S. Maunsell, D. Bito, and D. Putland. 2011. Macrolepidopteran assemblages along an altitudinal gradient in subtropical rainforest - exploring indicators of climate change. Memoirs of the Queensland Museum 55: 375-389.

Kitching, R. L., D. Putland, Ashton, L. A., M. J. Laidlaw, S. L. Boulter, H. Christensen, and C. L. Lambkin. 2011. Detecting biodiversity changes along climatic gradients: the IBISCA Queensland Project. Memoirs of the Queensland Museum 55: 235-250.

*Corresponding author